If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+40x=-90
We move all terms to the left:
4x^2+40x-(-90)=0
We add all the numbers together, and all the variables
4x^2+40x+90=0
a = 4; b = 40; c = +90;
Δ = b2-4ac
Δ = 402-4·4·90
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-4\sqrt{10}}{2*4}=\frac{-40-4\sqrt{10}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+4\sqrt{10}}{2*4}=\frac{-40+4\sqrt{10}}{8} $
| 35p-400=44,225 | | 8x-3=5(x-3) | | 8x-3=5(x+3) | | a/9-8=4 | | 5(a-3)=10 | | 2xx2=-12 | | -15+8b=17 | | (3*c)+9=57 | | 3.65(8.1-3.62x)=4.1-2x | | -15+7b=13 | | -2x+-1/12x=6/12 | | 5(n-3)=20 | | 5y+10=115 | | 2y-12=30 | | 3(x-4)+5x=9x-36 | | -3k-5(8-5k)=-128 | | 4x-25=39 | | 36(x+25)=1,620 | | 36(x-25)=1,620 | | 3r-8=16 | | 33=6-3w | | 12+9=y | | 13y−12y=16 | | 146r=15 | | (u-7)^2=45 | | 6=96/u | | 4x-6=9x=21 | | 4(x-2)=2x+18 | | 4x-6=9x=-21 | | 7-9·7-3=7x | | 2a+3=11a | | M=9t |